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The motion of a light particle in an eccentrically rotating cylinder provides a method
for verifying stationary history lift force effects at low but non-zero particle Reynolds
numbers. We examine the flow in detail using a Lagrangian equation of motion
for constant, non-zero-vorticity flows, and we predict a measurable and stationary
contribution of history lift effects that can be verified experimentally with current
experimental techniques. Because the history lift contribution is relevant only under
certain conditions (which are determined in this work), the present flow configuration
also allows one to isolate history drag effects under normal gravitation conditions
without resorting to the tethered-particle arrangement used in previous works. We
formulate and solve the trajectory problem for light particles that attain stable orbital
motion, and we propose an experimental concept that makes possible the study of
individual contributions of Lagrangian forces to the motion of small particles in
viscous flows.

1. Introduction
The history path of a particle moving in a non-uniform viscous flow field is greatly

affected by small perturbations over time, i.e. a small force that results only in a
minute local change in trajectory may result in a much different overall particle
trajectory far downstream from the local position. It is therefore of interest to study
equations of motion that can describe particle–flow interactions as accurately as
possible. The equation proposed in Coimbra & Kobayashi (2002) is used in this work
to determine the effect that the history lift force has on the motion of a particle in an
eccentrically rotating flow. The stationary and stable orbital motion described by the
particle is used to determine whether or not history lift effects can be measured with
the available temporal and spatial resolutions of conventional experimental methods
(Coimbra et al. 2004). Hence, this work provides not only a complete formulation for
the dynamics of suspended particles in eccentrically rotating flows, but also relevant
criteria for the design of experiments that can potentially validate each one of the
viscous forces that determine particle trajectories in non-uniform, time-dependent
flows.

Because of its importance in both natural and engineered flows, the motion of
a single small sphere in a viscous flow has been studied extensively for both
infinitesimal (see e.g. Boussinesq 1885; Basset 1888; Hjelmfelt & Mockros 1966; Chao
1968; Reeks & McKee 1984; Mei, Adrian & Hanratty 1991; Chaoui & Feuillebois
2003) and finite particle Reynolds numbers (see e.g. McLaughlin 1991; Mei &
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Adrian 1992; Lovalenti & Brady 1993; Chang & Maxey 1994; Kim, Elghobashi &
Sirignano 1998). The transient, infinitesimal Reynolds number (Stokes flow), particle
response in a uniform but time-dependent background flow was solved exactly by
Coimbra & Rangel (1998). The transient and stationary behaviour of particle motion
in harmonically forced Stokes flow is discussed in detail in Coimbra & Rangel (2001)
and in the references therein. Stationary one-directional history effects have been
recently verified experimentally by Coimbra et al. (2004) for high Strouhal number,
low particle Reynolds number flows, thus validating the classical Basset kernel of
the history force in Tchen’s equation (Tchen 1947) for a wide range of the relevant
parameters (Reynolds and Strouhal numbers), and for both heavy and light particles.
Coimbra & Kobayashi (2002) proposed the incorporation of steady Saffman and
history inertial lift effects into an equation of motion that is relevant to constant-
vorticity flows (Saffman 1965). In that work, Coimbra & Kobayashi analysed the
special case of uniform and steady rotational flows, which represents one of the
simplest possible shear flows where lift effects can be observed and quantified without
the presence of solid walls. In particular, the rotating cylinder case provides a steady-
state equilibrium position for light particles that can be verified experimentally. The
equation proposed in Coimbra & Kobayashi (2002) was compared with the classic
Maxey–Riley equation (Maxey & Riley 1983), which was derived for the limit of
infinitesimal particle Reynolds numbers and therefore does not take into account
inertial lift effects. Some key differences are found by including lift effects, including
a shift in the position of the equilibrium points to a different quadrant in respect to
the axis of the rotating cylinder and the gravitational vector.

In the present work, we focus our attention on the less studied history lift force and
propose an experiment that can ascertain the validity of the history lift functional
form as a half-derivative of the steady Saffman lift (Coimbra & Kobayashi 2002).
Although a formal derivation of the history lift force in closed form requires a
laborious perturbation analysis for the first asymptotic inertial time-dependent terms,
the arguments and the scaling analysis used in Coimbra & Kobayashi (2002) indicate
that the kernel of the history lift force is in fact a half-derivative of the steady Saffman
lift force. This argument is analogous to the Basset history drag being a half-derivative
of the steady Stokes drag, and makes use of the fact that the Saffman lift force has the
same form as the Stokes drag when the migration velocity replaces the slip velocity.
The Basset-like form of the kernel of the history term is in agreement with the
asymptotic behaviour found by Asmolov & McLaughlin (1999) for high-frequency
flows. In order to produce a stationary history lift effect that is measurable over
time, we introduce a time-dependent, periodic forcing that does not, however, affect
the constant vorticity of the background flow. The proposed eccentrically rotating
configuration is a straightforward modification of the horizontally rotating cylinder
that generates history drag and lift effects in a stationary way. Thus, the eccentric
cylinder configuration yields results that are conducive to experimental verification,
and does not affect the validity of the equation in use.

2. Eccentric rotating cylinder model
We consider a rotating cylinder filled with a viscous fluid, oriented such that its axis

is in a plane perpendicular to the gravitational acceleration. The axis of the cylinder
undergoes circular motion about the rotating axis (see figure 1). The centre of mass
of the cylinder thus describes a circle while maintaining its horizontal orientation in
respect to gravity.
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Figure 1. Reference frames used in the computation: Ixy is the inertial reference frame with
origin at the centre of the eccentric and Cx̄ȳ is the non-inertial frame attached to the centre
of the cylinder.

Because the flow field and the gravitational acceleration are co-planar, a spherical
particle introduced into the fluid will have a trajectory that is similarly constrained.
This observation allows the problem to be modelled in two dimensions. We take
advantage of the commutative algebra of complex numbers by using the identification
� ≡ �2. Note that we adopt the convention of using upper-case symbols to
designate dimensional quantities and the respective lower-case symbols to designate
dimensionless quantities. Exceptions to this convention should be obvious enough to
avoid any confusion (Rep ≡ Reynolds number, Sl ≡ Strouhal number, etc.).

Also, given the nature of the motion of the eccentric cylinder, it is appropriate to
look at the system using two reference frames, which we will refer to as the cylinder
reference frame and the inertial reference frame. The cylinder, or non-inertial, reference
frame, Cx̄ȳ, is attached to the centre of the rotating cylinder, with the positive y-
(imaginary) axis pointing in the direction opposite to gravity. The inertial reference
frame, Ixy, is centred on the fixed point about which the cylinder is translating. The
origin of Cx̄ȳ is then moving around the origin of Ixy with a constant radius of R0

and a constant angular velocity of Ω0. Note that Ixy is oriented in the same way
as Cx̄ȳ at all times, with the y-axis pointing away from gravity. So, in the inertial
frame, the centre of the cylinder has the position vector Z0(T ) = R0e

iω0T at a given
time T . For simplicity, we assume that position vector to be at zero radian at T = 0,
i.e. Z0(T = 0) = R0.

If the position vectors in the inertia reference frame and the cylinder reference
frame are denoted by Z and Z̄, respectively, then we can move from one reference
frame to the other with the (time-dependent) transformation

Z = Z̄ + Z0(T ). (2.1)

3. Lagrangian equation of particle motion in uniform vorticity flows
For a constant-gradient flow U(X, T ) with constant vorticity (Z = ∇ ×

U = constant), the Laplacian is null (∇2U = 0), and the Lagrangian equation of



104 E. A. Lim, C. F. M. Coimbra and M. H. Kobayashi

motion for a particle in the low shear Reynolds number (Res � 1) regime (Coimbra &
Kobayashi 2002) is

mpD(V ) = mf

DU
DT

− mf

2

[
D (V ) − DU

DT

]
− aΛS

ν1/2
D1/2(W )−ΛS(W )

+ CSa
2

(
µρf

|Z|

)1/2

Z × W + CSa
3ρf

(
1

|Z|

)1/2

D1/2(Z × W ) + (mp − mf )G. (3.1)

The symbol V represents the absolute velocity of the particle and W is the particle
velocity relative to the fluid. Other relevant variables and parameters include: particle
radius, a; kinematic and dynamic viscosities, ν and µ; the masses of the particle and
displaced fluid, mp and mf , and the corresponding densities, ρp and ρf . The symbol
D is the generalized differential operator in dimensional time T , which is formally
defined for regular functions as

Dq f =




1

Γ (−q)

∫ T

−∞
(T − σ )−q−1 f (σ )dσ, q < 0

1

Γ (p − q)

dp

dT p

∫ T

−∞
(T − σ )p−q−1 f (σ )dσ, q � 0,

(3.2)

where Γ (s) is the Gamma (generalized factorial) function of s, and p − 1 � q <p

with p =1, 2, . . .. Thus, D ≡ d/dT , D2 ≡ d2/dT 2, etc. Then, D1/2 ≡ d1/2/dT 1/2 is called
a half-order derivative or semi-derivative, and by (3.2) with q = 1/2 and p = 1, is

D1/2 f =
1√
π

d

dT

∫ T

−∞

f (σ )√
(T − σ )

dσ =
1√
π

∫ T

−∞

d f (σ )

dσ

1√
(T − σ )

dσ. (3.3)

Note that Z = ∇×U here is vorticity, to be distinguished from Z, the position vector
in the complex plane. The symbol X stands for the general position vector in �3.

Equation (3.1) is simply Newton’s Second Law with all the fluid force terms on
the right-hand side. The so-called pressure term is represented by the two DU/DT

terms. The second term containing the square brackets is the added mass force (see e.g.
Lamb 1945). The next two terms represent the viscous drag forces: history drag (with
the semi-derivative) and Stokes drag, with ΛS = 6πµa as the Stokes drag coefficient.
These are followed by the lift effects: history lift (again, with the semi-derivative) and
Saffman lift (Saffman 1965). The Saffman lift coefficient CS has a numerical value of
6.46 in the linear regime (Res < 1). Gravity effects are included in the buoyancy-weight
term on the right-hand side of (3.1).

Equation (3.1) was proposed by Coimbra & Kobayashi (2002) after a detailed scal-
ing analysis that justifies its use for uniform-vorticity flows in the range Rep ∼ Res < 1.
Note that (2.9) in Coimbra & Kobayashi (2002) contains a typographical error in the
dimensional form of the history lift force. The correct expression is shown in (3.1)
above, as well as in previous publications (Ramirez et al. 2003). The inclusion of
inertial lift effects is necessary when departing from the infinitesimal Rep limit in
uniform-vorticity flows, even though the absolute value of the lift force is typically
much smaller than the steady and history drag forces or the gravitational contribution
(for a detailed description of the evolution of forces in time, and experimental
verification of the effectiveness of Lagrangian equations in unsteady flows, see Ramirez
et al., 2003; Candelier, Angilella & Souhar 2004; and Coimbra et al. 2004). The
rationale for including the history lift force in (3.1) follows from scaling arguments
that take into consideration the unsteady effect of a linearized Saffman-like point force
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on the motion of the particle (Coimbra & Kobayashi 2002). The scaling analysis leads
to a Basset-like kernel for the history lift force that corroborates the high-frequency
limit of the asymptotic-numerical analysis of Asmolov & McLaughlin (1999). The
Basset kernel implies an inverse-square-root dependence on the rotating frequency
for the total lift force in the range of parameters under study in the present work
(Rep ∼ Res < 1).

3.1. Non-dimensionalization

We non-dimensionalize (3.1) using the particle radius for length, and a characteristic
time scale τp for time. To aid in the non-dimensionalization process, it is useful to
define the mass (or density) ratio α = mf /mp = ρf /ρp . With that, a characteristic time
scale can be written as τp =2a2/(9ναγ ) where γ =2/(2 + α). The non-dimensional
form of (3.1) is thus

D(v) = 3�
Du
Dt

− w − 3�1/2D1/2(w) + CL(ζ × w) + 3CL�1/2D1/2(ζ × w) + g, (3.4)

with the variables in lower case representing the dimensionless versions of their
respective counterparts. This dimensionless form has the advantage that there are
only two parameters, � = α/(2 + α) and CL, the lift coefficient, which is defined as

CL ≡ CS

2π

√
�

|ζ | . (3.5)

The dimensionless gravitational effect, g, has the magnitude of Rep,τ /(9�) and acts in
the direction of gravity, or

g = −Rep,τ

9�
ĵ , (3.6)

where Rep,τ is the terminal particle Reynolds number, given by Rep,τ = aVτ/ν. In
terms of the quantities defined above, the terminal velocity of a sphere falling under
gravity in an otherwise quiescent fluid is Vτ = (1 − α)γ τpGc, with Gc =9.81 m s−1 as
the gravitational constant.

3.2. Transformation into the complex domain

To transform (3.4) to the complex domain, we use the following identities:
v = Dz = D z̄ + iω0z0; u = iω z̄ + iω0z0; w = v − u = D z̄ − iω z̄; ζ × z̄ =2iω z̄; ζ × u =
−2ω2 z̄−2ωω0z0; ζ ×v = 2ω(iD z̄−ω0z0); ζ ×w = 2ω(iD z̄+ω z̄); Du/Dt = −ω2

0 z0−ω2 z̄;
and D2z0 = −ω2

0 z0. For our case of two-dimensional flow, the vorticity cross-product
is treated as an operator such that ζ × ≡ 2iω. With the above identities, equation (3.4)
is represented in the complex domain by the apparent motion z̄(t):

D2 z̄ + 3�1/2(1 − 2iCLω)D3/2 z̄ + (1 − 2iCLω)D z̄ − 3i�1/2ω(1 − 2iCLω)D1/2 z̄

+ [3�ω2 − iω(1 − 2iCLω)] z̄ = (1 − 3�)ω2
0 z0 + g. (3.7)

Equation (3.7) is a linear non-homogeneous fractional differential equation with
constant coefficients. Recall that z̄(t) is the position vector of the particle with respect
to the cylinder frame and z0(t) (known for all time) is the position vector of the
cylinder frame with respect to the inertial frame.

Equation (3.7) can be written in a more compact form as

D2 z̄ + (1 − 2iCLω)
(
1 + 3�1/2D1/2

)
(D z̄ − iω z̄) + 3�ω2 z̄ = (1 − 3�)ω2

0z0 + g. (3.8)

The above form has the advantage of showing explicitly the drag and lift forces
as well as the ‘normal’ and history components of those forces. The second term
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of the left-hand side is associated with the drag and lift effects. The terms in the
first parentheses represent drag and lift components with drag being unity and lift
as −2iCLω. The terms in the second parentheses indicate the ‘normal’ and history
components, with the normal component being unity and the history component
represented by the operator 3�1/2D1/2. The remaining two terms on the left-hand side
relate to the pressure term (3�ω2 z̄) and to the acceleration of the particle (D2 z̄).

3.3. Superposition of solutions

Since (3.8) is linear, we can solve it in two stages by separating it into two equations

D2H z̄g + (1 − 2iCLω)
(
1 + 3�1/2D1/2

)
(DH z̄g − iωH z̄g) + 3�ω2H z̄g = +H g (3.9)

and

D2 z̄0 + (1 − 2iCLω)
(
1 + 3�1/2D1/2

)
(D z̄0 − iω z̄0) + 3�ω2 z̄0 = (1 − 3�)ω2

0z0. (3.10)

The first equation gives the response of the particle to a step function H with
amplitude g and null initial conditions z̄g(0) = D z̄g|

t=0 = 0. That is, the particle, fixed
to z̄ = 0 for t � 0−, is freed and allowed to respond to gravity from t =0+. This gives
us a known (null) history at t = 0+. Note that more general initial conditions can
be handled by adjoining the corresponding term in the equation. Since this is not
relevant for our purposes, we consider only the null initial conditions for simplicity.

The second equation represents the particle response to the translation of the
cylinder about the fixed point. We will refer to this contribution to the particle
motion as the frequency response.

The solution to (3.8) is then the combination of the solutions of (3.9) and (3.10):
z̄ = z̄g + z̄0. The solution of (3.9) can be found in Coimbra & Kobayashi (2002) and
will not be repeated here. This leaves us the task of solving (3.10) for z̄0.

3.4. Frequency response

As the homogeneous solution to (3.10) is exactly the same as the homogeneous
solution to (3.9), all that is needed now is the particular solution to (3.10), which we
will indicate with z̄0,p . The general solution of the apparent motion, z̄ = z̄g + z̄0, can
be represented equivalently by z̄ = z̄g + z̄0,p .

Recalling that z0 = r0e
iω0t , we therefore seek the particular solution z̄0,p = Znr0e

iω0t

using the method of undetermined coefficients as is appropriate for a constant-
coefficient, fractional differential equation. Substituting this expression in equation
(3.10) and solving for Zn gives

Zn =
(1 − 3�)δ2

−δ2 + 3� + i(9�/Res)(1 − 2iCLRes/9�)
(
1 + eiπ/4

√
δRes

)
(δ − 1)

(3.11)

where δ =ω0/ω is the ratio of the frequencies, and Res is the characteristic shear
Reynolds number defined as Res = a2Ω/ν = 9�ω. Note that Res is constant for a
uniform-vorticity flow. The denominator originates from the left-hand side of (3.10),
and allows us to trace each term to its parent force. The term −δ2 is due to the
acceleration of the particle, 3� is due to the pressure term, and the large factored
term represents the drag and lift forces: 1 − 2iCLRes/(9�) for drag and lift, and
1 + eiπ/4

√
δRes the normal and history components of these forces.

To get the particle trajectory in the inertial reference frame, we employ the
dimensionless equivalent of (2.1), giving us

z = z̄g + Znr0e
iω0t + r0e

iω0t . (3.12)
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Figure 2. Particle trajectories z(t) as seen by an observer in the inertial reference frame Ixy:
(a) the trajectory as described by (3.7); (b) the absence of lift effects; (c) missing both history
drag and history lift; and (d) (3.7) without history lift. The parameters for the flow are:
Rep,τ = Res = 0.7, α = 2 (denser fluid), r0 = 0.1 and δ =5. Lengths are normalized by particle
radius.

3.5. Reduction to the simple rotating cylinder

Together with (3.11), it is noted that in two special cases, the problem reduces to that
of the gravitational response of a particle in a simple rotating cylinder, as described
in Coimbra & Kobayashi (2002). The first case is when the eccentric radius vanishes,
r0 = 0, and with it the two last terms of (3.12). The second case is when both the
cylinder rotation and translation frequencies coincide, ω0/ω = δ = 1. In this case the
fluid is effectively rotating about the inertia fixed point as well as the centre of the
cylinder, and the particle trajectory should be as if it were in a simple virtual rotating
cylinder centred on the inertia fixed point. This is confirmed in equation (3.12) for
Zn|δ = 1 = −1, where the two last terms cancel each other’s effects.

4. Results
Figure 2 shows the particle paths predicted by different equations of motion. The

significantly different trajectories underscore the importance of finding the correct
equation of motion. Compared to (3.7), the difference in particle path calculated
using only Stokes drag (and pressure) is obvious and striking. Figure 2(b) represents
a trajectory that would have been predicted using the equation proposed in Maxey &
Riley (1983), since the equation neglects lift effect in a flow with uniform shear. Note
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that the long-time quasi-steady orbit of the particle is above the horizontal axis of the
fixed point when there is no lift. Figure 2(c) shows the importance of history effects,
reaffirming the findings of Candelier et al. (2004). With lift force but no history lift
effect, figure 2(d) shows a particle path that is closer to that of figure 2(a). However,
there are still differences in the particle paths which will be explored in a little more
detail below.

4.1. The history lift difference

Although, as can be seen in figures 2(a) and 2(d), the particle paths with and
without history lift are clearly different, it is not immediately clear how to quantify
the difference in a useful manner. What is desired is an appropriate quantification
that is able to capture the history effect and, preferably, conducive to experimental
verification. To that end, we look at the effect of history lift on the quasi-steady
(long-time) trajectory of the particle.

Rewriting (3.12) as

z = z̄g + (Zn + 1)r0e
iω0t , (4.1)

it becomes clear that as t → ∞, z̄g converges to a constant (for a light particle, as in
Coimbra & Kobayashi 2002), and z then describes a circular orbit of radius |Zn + 1| r0

about this constant z̄g(t → ∞). Since history forces (both lift and drag) vanish for a
particle in equilibrium, z̄g(t → ∞) is the same whether history lift is considered or
not. It then follows that in order to see the effect of history lift on the long-time
quasi-steady particle path, we only need to look at the effect of history lift on (Zn +1).

An approach for quantifying the effect of history lift on (Zn + 1) is to look at the
difference in stable orbital radii (normalized with the eccentric radius) |Zn + 1| in
the presence and absence of the history lift term. For the results from experimental
verification to be unambiguous, it is desired that the difference between with and
without history lift

�HL = |Zn + 1|no history lift − |Zn + 1| (4.2)

be at least one order of magnitude larger than the experimental uncertainty. In order
to establish the conditions for an experiment we first realize that although �HL is a
function of only three dimensionless parameters (Res , � and δ), the dependence of
�HL on these three parameters is not trivial. The experiments must also conform to
the three constraints Rep < 1, Rep �

√
Res , and α > 1 (or � > 1/3) that are required for

the validity of the equation and for achieving a stable orbit. We can take advantage
of the constraints by noting that, in general, larger Res , α and δ produce larger �HL.
Also, there exist values of δ ∼ 1 that yield the large �HL that we seek (figure 3).

An example of physical parameters that match favourable conditions for an
experiment makes use of a fluid of viscosity similar to castor oil (µ = 1.8×10−3 m2 s−1,
ρf = 960 kg m−3) and a hollow polypropylene ball (radius a = 5 mm, ρp = 440 kg m−3).
A rotation frequency within the constraints of Res would be of the order of
Ω = 600 r.p.m. Translation frequency of the cylinder can be selected by taking
advantage of the maximum at δ = 1.1, so Ω0 = 660 r.p.m. Since �HL is normalized
with respect to the eccentric translation radius r0, we can select a large eccentricity,
say 1.5 mm or r0 = 0.3. With these parameters, equations (4.2) and (3.11) predict an
orbital radius difference of 0.17 mm, the orbital radii with and without history lift
being 1.46 mm and 1.63 mm respectively. The relevant parameters for this example
are Res =0.867, α = 2.18 and δ = 1.1.
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Figure 3. Difference in steady orbital radii with and without history lift effect. These plots
show the effects on the difference in radii when (a) Res , (b) α (�) and (c) δ are varied about the
example experimental parameters of Res = 0.867, α =2.18 and δ = 1.1. The �HL axis represents
dimensionless values.

5. Conclusions
We studied the motion of a light particle in an eccentrically rotating cylinder in order

to examine conditions for which history lift effects become relevant in a stationary
sense. The importance of lift and drag forces is illustrated through the exact solution
of the proposed equation of motion. We characterize the range of parameters for
which stationary history lift effects are relevant and measurable. The flow under study
presents a suitable candidate for experimental validation of Lagrangian forces that
can be performed with instrumentation currently available (Coimbra et al. 2004).
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